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We study random surface gravity wave fields and address the formation of large-amplitude waves in a
laboratory environment. Experiments are performed in one of the largest wave tank facilities in the world. We
present experimental evidence that the tail of the probability density function for wave height strongly depends
on the Benjamin-Feir index(BFI)—i.e., the ratio between wave steepness and spectral bandwidth. While for a
small BFI the probability density functions obtained experimentally are consistent with the Rayleigh distribu-
tion, for a large BFI the Rayleigh distribution clearly underestimates the probability of large events. These
results confirm experimentally the fact that large-amplitude waves in random spectra may result from the
modulational instability.
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The determination of the probability density function of
wave heights for a system of a large number of random
waves is definitely a task of major importance from both
theoretical and applicative points of view. For linear waves
Longuett-Higgins[1] showed that, if the wave spectrum is
narrow banded and if the phases of the Fourier components
of the surface elevation are distributed uniformly, then the
probability distribution of crest-to-trough wave heights is
given by the Rayleigh distribution. After the pioneering work
by Longuett-Higgins[1], the validity of the Rayleigh distri-
bution for wave heights has been widely investigated. The
distribution was found to agree well with many field obser-
vations[2] even though the frequency spectrum was not al-
ways as narrow and the steepness was not as small as re-
quired by the theory. Nevertheless, in the last few years,
times series recorded in the ocean have shown that extreme
wave events can appear on the surface of the ocean(the most
striking is the one recorded in the North Sea in 1995, where
a wave of 26 m height was measured; see, for example[3]).
Faced with such measurements, two questions can be natu-
rally formulated:(i) What is the physical mechanism of for-
mation of these waves?(ii ) Do such large-amplitude waves
obey a different distribution than Rayleigh?

Even though a number of physical mechanisms for the
formation of large-amplitude waves have been identified
[linear superposition[1], the wave-current interaction(see
[4,5])], and the modulational instability[3,6,7], (known also
as Benjamin-Feir instability[8,9]), it should be stated that
not much theoretical and experimental progresses have been
made concerning the resulting statistical properties of the
surface elevation. More in particular, the relation between

the various sea states and the probability density function has
not been clearly identified. Onoratoet al. [11], based on di-
mensional considerations for the nonlinear Schrödinger
(NLS) equation, have pointed out that the ratio between the
wave steepness and the spectral bandwidth[after [13] this
ratio is known as the Benjamin-Feir index(BFI)] plays an
important role in the appearance of large amplitude waves.
Numerical simulations of envelope equations(nonlinear
Schrödinger and higher-order equations) characterized by
initial conditions provided by a Joint North Sea Wave Project
(JONSWAP) spectrum with random phases showed that the
probability density function of wave heights strongly de-
pends on the BFI(see[10,11]): for small values of the BFI,
the Rayleigh distribution approximates the numerical data
rather well, but for large values of the BFI the Rayleigh
distribution clearly underestimates the tail of the probability
density function obtained from numerical simulations. This
departure from the Rayleigh distribution was attributed to the

FIG. 1. Schematic of the wave tank facility at Marintek. Solid
circles indicate the position of the probes.
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Benjamin-Feir instability mechanism—i.e., to the formation
of unstable, coherent modes which characterize the evolution
of the NLS equation[12]. According to these results, the BFI
could be thought of as a measure of the importance of the
modulational instability in random spectra. Similar conclu-
sions have been obtained by Janssen[13] who, starting from
the Zakharov equation, has developed a kinetic equation that
takes into account quasiresonant interactions—i.e., the
modulational instability; he was able to compute from the
developed theory statistical quantities of the surface eleva-
tion such as, for example, the kurtosis. He found out that, if
the ratio between the steepness and the spectral bandwidth is
large, the Gaussian distribution underestimates the tails of
the probability density function for the surface elevation. It is
important to stress here that all the cited results have been
reached numerically and theoretically from simplified mod-
els but, until now, they had never been verified experimen-
tally.

In this Brief Report we present the first experimental evi-
dence that the wave statistics depend on the BFI. Our main
goal here is to give some experimental support to the nu-
merical and theoretical work performed in recent years that
suggests the idea that the modulational instability(Benjamin-
Feir instability) can be responsible for the formation of freak
waves. More in particular our intent here is to underline the
importance of the BFI for the determination of the probabil-
ity density function of wave heights.

The experiment was carried out in the long-wave flume at
Marintek (see, e.g.[14], for the description of the tank). A

sketch of the wave flume is given in Fig. 1. The length of the
tank is 270 m and its width is 10.5 m. The wave surface
elevation was measured simultaneously by 19 probes placed
at different locations along the flume. Conditions at the wave
maker were built as random wave signals characterized by a
JONSWAP power spectrum. Signals driving the wave maker
were prepared according to the “random realization ap-
proach” by using random spectral amplitudes as well as ran-
dom phases. Three different JONSWAP spectra characterized
by different BFI have been considered. In Table I we report
the parameters—i.e., the significant wave height
Hs—computed as 4 times the standard deviation of the free
surface elevation, the steepnesse, and the relative frequency
spectral bandwidth Df / f0, which characterized each
JONSWAP spectrum. According to the definition(see[13])
the BFI is also computed as BFI=Î2e / s2Df / f0d. Details of
the experiments can be found in[15]. The three different
experiments will be called BFI0.2, BFI0.9, and BFI1.2, with
obvious meaning. The dominant frequency was selected to
be f0=0.6667 Hz. In order to have sufficiently good statis-
tics, a large number of waves were recorded. Note that a
large amount of data is of fundamental importance for the
convergence of the tail of the probability density function for
wave heights. Therefore for each type of spectrum, five dif-
ferent realizations with different sets of random phases have
been performed. The duration of each experimental realiza-
tion was 32 min. The total number of wave heights(counting

TABLE I. Parameters of the three different experiments per-
formed at Marintek.

Hssmd e Df / f0 BFI

0.11 0.098 0.28 0.2

0.14 0.125 0.09 0.9

0.16 0.142 0.08 1.2

FIG. 2. Evolution of the kurtosis along the wave tank: BFI0.2,
crosses; BFI0.9, open circles; BFI1.2, solid circles. The horizontal
axis has been nondimensionalized with the characteristic wave-
length computed using the linear dispersion relation.

FIG. 3. Time series recorded for BFI=1.2 at probe 14 showing
a large-amplitude wave.

FIG. 4. Survival function atx/L=2.8 for BFI0.2 (crosses),
BFI0.9 (open circles), and BFI1.2(solid circles).
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both up-crossing and down-crossing) recorded for each spec-
tral shape at each probe was about 12 800 waves.

We first consider the behavior of some statistical quanti-
ties that can give an indication of the presence of extreme
events in the time series. In particular we consider the fourth-
order moment of the probability density function, the kurto-
sis, which gives an indication of the importance of the tail of
the distribution function. We recall that for a Gaussian dis-
tribution the value of the kurtosis is 3, while larger values of
kurtosis indicate the presence of extreme events. In Fig. 2 we
show the kurtosis for the three experiments as a function of
the distance from the wave maker. The horizontal axes have
been nondimensionalized using a wavelength corresponding
to the peak period at the wave maker: forT=1.5 s, L
=3.51 m. First of all it should be noted from the figure that
the kurtosis is always greater than the Gaussian prediction.
For larger BFI(BFI=0.9 and BFI=1.2) the kurtosis grows
very rapidly and reaches its maximum between 25 and 30
wavelengths from the wave maker. For the smallest value of
the BFI considered, it is shown that the kurtosis is almost
constant with a mean value close to 3.2. This result suggests
a significant dependence on the BFI of the statistical proper-
ties of surface gravity waves. Before discussing the statistical
properties of wave heights we show from our data just an
example of the type of event that causes the kurtosis to de-
part from its Gaussian value. In Fig. 3 we show a typical
large amplitude wave that characterizes our experimental
time series. Those kind of events are much more frequent for
BFI=0.9 and BFI=1.2 with respect to the case of BFI=0.2.

We now discuss the behavior of the survival function for
wave heights, considering all together zero up-crossing and
down-crossing wave heights. We compare our experimental
results with the survival function obtained for the Rayleigh
distribution—i.e., expf−2sH /Hsd2g. We compare the survival
function for the three different experiments at the same dis-
tance from the wave maker. In Fig. 4 we show the survival
function at the first probe,x/L=2.8. We recall that the wave

field has been generated at the wave maker as a linear super-
position of random waves; therefore, we expect that at a few
wavelengths the wave height should be described approxi-
mately by the Rayleigh distribution. For larger values of the
BFI, the Rayleigh distribution overestimates the experimen-
tal data for large waves; this is consistent with most of the
observations(see[16] and comments in[17]).

We then consider the probe atx/L=18.5; see Fig. 5.
While the data from BFI=0.2 are well described by the Ray-
leigh distribution, it is quite clear from the plot that the ex-
perimental data for BFI=0.9 and BFI=1.2 are substantially
underestimated by the Rayleigh distribution. The curve for
BFI=1.2 lies always above the one with BFI=0.9 and sepa-
rates from the Rayleigh distribution at aroundH /Hs=1,
which corresponds to a probability of 1/10 waves. A similar
behavior is seen in Fig. 6 atx/L=32.7.

The results shown give a clear experimental evidence that
the BFI is an interesting parameter that affects the tail of the
probability density function of wave heights. Starting with an
initial spectrum characterized by random phases with a sta-
tistics that is Gaussian, our experimental data show that, if
the BFI is sufficiently large, the time series recorded after
about 25–30 wavelengths from the wave maker is character-
ized by large-amplitude events such as the one shown in Fig.
3. These events are the result of the Benjamin-Feir instabil-
ity. In terms of the language of the nonlinear Schrödinger
equation, this instability results in the so-called “breather
modes”—i.e., nonlinear waves that grow, reach a maximum,
and return to their initial state in a recurrent manner. In a
nonlinear random wave field the presence of these waves is
statistically significant, leaving clearly their signature in the
survival function of wave heights. This phenomenological
description, which has been conceived during many years of
research with the envelope equations(see [6,7,10,11]), is
very consistent with the behavior of the experimental data
presented. Even if we have collected a large number of data,
sufficient to observe a clear departure from the Rayleigh dis-
tribution, we believe that statistics computed on even larger

FIG. 5. Survival function atx/L=18.5 for BFI0.2 (crosses),
BFI0.9 (open circles), and BFI1.2(solid circles).

FIG. 6. Survival function atx/L=32.7 for BFI0.2 (crosses),
BFI0.9 (open circles), and BFI1.2(solid circles).
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data sets should be used in order to model the tail of the
survival function. One of the limitations of our work that
restrict us from extending our results in a straightforward
manner to real wind waves is that our experiment has been
performed in the case of infinite crested waves. For two-
dimensional propagation, results on the statistical properties
of wave amplitudes are much harder to obtain(see
[18,19,20]) because numerical simulations become much
more expensive and experimental work requires large basins

with wave makers capable of generating waves in different
directions.
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